Discovery of S-(2-Guanidylethyl)-isothiourea (VUF 8430) as a Potent Nonimidazole Histamine H₄ Receptor Agonist

Herman D. Lim, Rogier A. Smits, Remko A. Bakker, Cindy M. E. van Dam, Iwan J. P. de Esch, and Rob Leurs*

Leiden/Amsterdam Center for Drug Research, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

Received July 26, 2006

Abstract: During an in-house database screen, we identified *S*-(2-guanidylethyl)-isothiourea as a high affinity agonist for the histamine H_4 receptor, with a 33-fold selectivity over the histamine H_3 receptor and negligible affinity for the other histamine receptor subtypes. This nonimidazole ligand is introduced as a useful and complementary pharmacological tool that enables further unraveling of the physiological roles of the H_4 receptor.

The human histamine H₄ receptor (H₄R) is a G_{i/o} proteincoupled receptor that was identified and cloned in 2000.¹ Several lines of evidence indicate that this receptor plays important roles in the immune system. Activation of the receptor leads to chemotaxis of mast cells and eosinophils^{2,3} and mediates the production of inflammatory mediators, such as IL-16 and leukotriene B₄.^{4,5} These data suggest that H₄R antagonists have potential as drugs to treat inflammatory diseases, such as asthma and allergy.⁶ To validate the H₄R as a drug target, pharmacological tools such as selective agonists and antagonists are needed. A few selective H₄R antagonists have been published in literature, most notably **1** and **2** (Figure 1).^{7,8}

The H₄R agonist OUP-16 described earlier shows only moderate affinity for the H₄R ($pK_i = 6.9$).⁹ Recently, we have described 4-methylhistamine (**4**) as a selective human H₄R agonist ($pK_i = 7.3$) that shows >100-fold selectivity over the human H₁R, H₂R, and H₃R.¹⁰ In the same publication, the H₂R agonist and H₃R antagonist dimaprit (**5**) was also identified as an H₄R agonist with moderate affinity (Figure 2).¹⁰ Here we describe a focused screening effort of close analogues of dimaprit (**5**) taken from our proprietary compound collection, using SK-N-MC cells stably expressing the human H₄R.¹¹ The affinity of the ligands for the human H₄R was determined by displacement of [³H]histamine binding, as described previously.¹⁰

Substitution of the tertiary amine group of dimaprit (5) by a guanidine group (compound 6, Table 1) results in a dramatic decrease in affinity. However, shortening the spacer of 6 that connects the isothiourea and guanidine groups from a propylene to an ethylene moiety leads to excellent H₄R affinity (compound 7, *S*-(2-guanidylethyl)-isothiourea dihydrobromide, (VUF8430)). This compound has a pK_i of 7.5, which is almost as high as that of histamine (**3**; $pK_i = 7.9$; Figure 3 and Table 1).

The two chemically different basic moieties of 7 are key for affinity, as the corresponding compound with two isothiourea groups and the compound with two guanidine groups (8 and 9, respectively) have almost 10-fold lower affinity. Analogues separating the guanidine and isothiourea moieties by a longer carbon spacer have reduced affinity for the human H_4R (compare

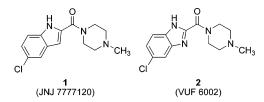


Figure 1. Structures of reference H₄R antagonists.

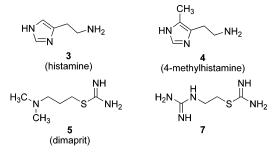
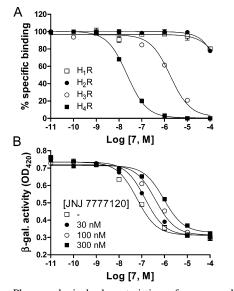


Figure 2. Structures of H₄R agonists.

Table 1. pK_i Values of Dimaprit (5) Analogues at the Human H₄R, as Determined by Displacement of [³H]Histamine Binding^{*a*}

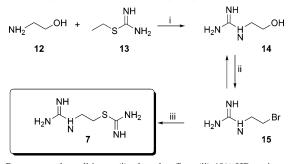
NH

compound ^b	Х	n	R	p <i>K</i> i
3 (histamine)				7.9 ± 0.1
5 (dimaprit)	S	3	N,N-dimethyl	6.5 ± 0.1
6	S	3	guanidine	5.1 ± 0.1
7	S	2	guanidine	7.5 ± 0.1
8	S	2	isothiurea	6.6 ± 0.1
9	NH	2	guanidine	6.4 ± 0.1
10	S	4	guanidine	5.5 ± 0.1
11	S	6	guanidine	5.4 ± 0.1


^{*a*} Data shown are the mean \pm SEM of at least three independent experiments. ^{*b*} Histamine was used as the dihydrochloride salt, all other compounds in Table 1 were used as the dihydrobromide salts.

10 and **11**). This shows that the ethylene spacer of **7** is optimal for interaction with the human H_4R .

Compound 7 was originally derived from the H₂R agonist dimaprit (5), but it is poorly active at the H₂R as determined at the right atrium of the guinea pig (pD₂ = 3.8, α = 0.4).¹² In a binding assay, 7 shows only minimal inhibition of [¹²⁵I]iodoaminopotentidine binding at the human H₂R expressed in CHO cells (Figure 3A). Likewise, 7 displays minimal inhibition of [³H]pyrilamine binding to the human H₁R expressed in COS-7 cells (Figure 3A). Furthermore, it shows only moderate affinity (pK_i = 6.0 ± 0.1) at the human H₃R, which is the closest relative of the human H₄R, as determined in a [³H]N^{α}methylhistamine displacement binding assay on the human H₃R stably expressed in SK-N-MC cells (Figure 3).


Compound 7 exerts agonistic activity (pEC₅₀ = 7.3 ± 0.1) at the human H₄R, which is determined as the inhibition of forskolin-induced cAMP-mediated increase in β -galactosidase activity. This inhibition reaches the same level as that exerted by histamine (**3**). Therefore, **7** is a full agonist (intrinsic activity $\alpha = 1$). Furthermore, the activity of **7** is dose-dependently shifted rightward by the H₄R-antagonist **1** (Figure 3B). Schild plot analysis of the antagonism of **1** against **7** results in a pA₂ value of 7.8, with a slope of 0.95 \pm 0.05, which is in accord with the previously described pA₂ of **1** against histamine (**3**).¹⁰

^{*} To whom correspondence should be addressed. E-mail: leurs@few.vu.nl. Phone: +31(0)205987600. Fax: +31(0)205987610.

Figure 3. Pharmacological characteristics of compound **7**. (A) Displacement of radioligands bound at the human H_1R , H_2R , H_3R , and H_4R by different concentrations of **7**. (B) Competitive antagonism by **1** of H_4R agonism by **7**, as measured by the inhibition of forskolin-induced CRE- β -galactosidase activity.

Scheme 1. Synthesis of S-(2-Guanidylethyl)-isothiourea (7)^{*a*}

^{*a*} Reagents and conditions: (i) ethanol, reflux; (ii) 48% HBr, microwave 130 °C, 20 min $(3\times)$; (iii) thiourea, ethanol, microwave 125 °C 15 min.

Compound 7 also exerts full agonistic activity (pEC₅₀ = 6.5 ± 0.1 , $\alpha = 1$) at the human H₃R in CRE- β -galactosidase assay performed in SK-N-MC cells. Interestingly, at the highest tested concentration (100 μ M), 7 shows no agonistic activity at the human H₁R and only 50% agonistic activity at the human H₂R (data not shown). The latter agrees with the result reported previously for H₂R activity evaluated in the right atrium of guinea pig.¹²

The synthesis of *S*-(2-guanidylethyl)-isothiourea (**7**) has been described in literature.^{13,14} According to this procedure, aminoalcohol **12** (Scheme 1) is treated with *S*-ethylisothiourea hydrobromide **13**, and in a one-pot procedure, the resulting alcohol **14** was treated with thiourea and concentrated HBr (48%). However, the isolated yield of this original procedure is very poor (10%). By iterative treatment of **14** with HBr under microwave conditions, isolation of bromide **15** and subsequent formation of the isothiourea moiety, a considerable increase in isolated yield (72%) can be obtained, making this compound readily available.

In conclusion, we have discovered a new potent H_4R agonist that shows a different pharmacological profile than that of the

previously described human H_4R agonist 4-methylhistamine (4). Therefore, these two compounds may complement each other in their use as H_4R pharmacological tools. Additionally, we report an improved, high-yield synthesis of this ligand that gives easy access to this novel pharmacological tool. The compound is currently being used to further characterize the H_4R in vivo.

Acknowledgment. We thank Dr. T. W. Lovenberg for supplying us with SK-N-MC cells stably expressing the human H_3R or H_4R . Thanks also to Ben Bruyneel for expert technical assistance.

Supporting Information Available: Experimental protocols and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Hough, L. B. Genomics meets histamine receptors: new subtypes, new receptors. *Mol. Pharmacol.* 2001, 59, 415–419.
- (2) O'Reilly, M.; Alpert, R.; Jenkinson, S.; Gladue, R. P.; Foo, S.; Trim, S.; Peter, B.; Trevethick, M.; Fidock, M. Identification of a histamine H₄ receptor on human eosinophils-role in eosinophil chemotaxis. *J. Recept. Signal Transduction Res.* **2002**, *22*, 431–448.
- (3) Hofstra, C. L.; Desai, P. J.; Thurmond, R. L.; Fung-Leung, W. P. Histamine H₄ receptor mediates chemotaxis and calcium mobilization of mast cells. *J. Pharmacol. Exp. Ther.* **2003**, *305*, 1212–1221.
- (4) Gantner, F.; Sakai, K.; Tusche, M. W.; Cruikshank, W. W.; Center, D. M.; Bacon, K. B.; et al. Histamine H₄ and H₂ receptors control histamine-induced interleukin-16 release from human CD8⁺ T cells. *J. Pharmacol. Exp. Ther.* **2002**, *303*, 300–307.
- (5) Takeshita, K.; Sakai, K.; Bacon, K. B.; Gantner, F. Critical role of histamine H₄ receptor in leukotriene B₄ production and mast celldependent neutrophil recruitment induced by zymosan in vivo. *J. Pharmacol. Exp. Ther.* **2003**, *307*, 1072–1078.
- (6) de Esch, I. J.; Thurmond, R. L.; Jongejan, A.; Leurs, R. The histamine H₄ receptor as a new therapeutic target for inflammation. *Trends Pharmacol. Sci.* 2005, 26, 462–469.
- (7) Thurmond, R. L.; Desai, P. J.; Dunford, P. J.; Fung-Leung, W. P.; Hofstra, C. L.; et al. A potent and selective histamine H₄ receptor antagonist with anti-inflammatory properties. *J. Pharmacol. Exp. Ther.* **2004**, *309*, 404–413.
- (8) Terzioglu, N.; van Rijn, R. M.; Bakker, R. A.; de Esch, I. J.; Leurs, R. Synthesis and structure-activity relationships of indole and benzimidazole piperazines as histamine H₄ receptor antagonists. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 5251–5256.
- (9) Hashimoto, T.; Harusawa, S.; Araki, L.; Zuiderveld, O. P.; Smit, M. J.; Imazu, T.; Takashima, S.; Yamamoto, Y.; Sakamoto, Y.; Kurihara, T.; Leurs, R.; Bakker, R. A.; Yamatodani, A. A selective human H₄-receptor agonist: (-)-2-cyano-1-methyl-3-[(2*R*,5*R*)-5- [1*H*-imi-dazol-4(5)-yl]tetrahydrofuran-2-y] methylguanidine. *J. Med. Chem.* 2003, 46, 3162–3165.
- (10) Lim, H. D.; van Rijn, R. M.; Ling, P.; Bakker, R. A.; Thurmond, R. L.; Leurs, R. Evaluation of histamine H₁-, H₂-, and H₃-receptor ligands at the human histamine H₄ receptor: identification of 4-methylhistamine as the first potent and selective H₄ receptor agonist. *J. Pharmacol. Exp. Ther.* **2005**, *314*, 1310–1321.
- (11) Liu, C.; Ma, X.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. *Mol. Pharmacol.* **2001**, *59*, 420– 426.
- (12) Sterk, G. J.; van der Goot, H.; Timmerman, H. The influence of guanidino and isothiourea groups in histaminergic compounds on H₂-activity. *Agents Actions* **1986**, *18*, 137–140.
- (13) Sterk, G. J. Studies on histaminergic compounds: structure-activity relationships at the histamine H₂-receptor. *Dissertation Vrije Uni*versiteit Amsterdam 1987, 125–136.
- (14) Shapira, R.; Doherty, D. G.; Burnett, W. T., Jr. Chemical protection against ionizing radiation. III. Mercaptoalkylguanidines and related isothiuronium compounds with protective activity. *Radiat. Res.* 1957, 7, 22–34.

JM060880D